百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术教程 > 正文

C# OpenCvSharp DNN 卡证检测矫正

csdh11 2025-02-10 11:58 26 浏览

说明

源码地址:https://modelscope.cn/models/iic/cv_resnet_carddetection_scrfd34gkps

在实人认证、文档电子化等场景中需要自动化提取卡证的信息,以便进一步做录入处理。这类场景通常存在两类问题,一是识别卡证类型时易受背景干扰,二是卡证拍摄角度造成的文字畸变影响OCR准确率。鉴于证件类数据的敏感性,我们采用大量合成卡证数据做训练(参见:SyntheticCards), 并改造人脸检测SOTA方法SCRFD(论文地址, 代码地址)训练了卡证检测矫正模型,可以对各类国际常见卡证(如,身份证、护照、驾照等)进行检测、定位及矫正,得到去除背景的正视角卡证图像,便于后续卡证分类或OCR内容提取。

效果

模型

Model Properties
-------------------------
---------------------------------------------------------------

Inputs
-------------------------
name:input.1
tensor:Float[1, 3, 640, 640]
---------------------------------------------------------------

Outputs
-------------------------
name:1401
tensor:Float[1, 25600, 1]
name:1455
tensor:Float[1, 6400, 1]
name:1507
tensor:Float[1, 1600, 1]
name:1408
tensor:Float[1, 25600, 4]
name:1461
tensor:Float[1, 6400, 4]
name:1513
tensor:Float[1, 1600, 4]
name:1415
tensor:Float[1, 25600, 8]
name:1467
tensor:Float[1, 6400, 8]
name:1519
tensor:Float[1, 1600, 8]
---------------------------------------------------------------

项目

代码

using OpenCvSharp;
using OpenCvSharp.Dnn;
using System;
using System.Collections.Generic;
using System.Diagnostics;
using System.Drawing;
using System.Drawing.Imaging;
using System.Windows.Forms;

namespace OpenCvSharp_Demo
{
public partial class Form1 : Form
{
public Form1()
{
InitializeComponent();
}

string fileFilter = "*.*|*.bmp;*.jpg;*.jpeg;*.tiff;*.tiff;*.png";
string startupPath;
string image_path;

private void Form1_Load(object sender, EventArgs e)
{
startupPath = System.Windows.Forms.Application.StartupPath;

image_path = "1.jpg";
pictureBox1.Image = new Bitmap(image_path);
image = new Mat(image_path);

opencv_net = CvDnn.ReadNetFromOnnx("carddetection_scrfd34gkps.onnx");
}

private void button1_Click(object sender, EventArgs e)
{
OpenFileDialog ofd = new OpenFileDialog();
ofd.Filter = fileFilter;
if (ofd.ShowDialog() != DialogResult.OK) return;

pictureBox1.Image = ;
pictureBox2.Image = ;
textBox1.Text = "";

image_path = ofd.FileName;
pictureBox1.Image = new Bitmap(image_path);
image = new Mat(image_path);
}

Stopwatch stopwatch = new Stopwatch();
Net opencv_net;
Mat BN_image;
Mat image;
Mat result_image;

float[] stride = { 8.0f, 16.0f, 32.0f };
int inpWidth = 640;
int inpHeight = 640;
float confThreshold = 0.5f;
float nmsThreshold = 0.5f;
bool keep_ratio = true;

Mat resize_image(Mat srcimg, ref int newh, ref int neww, ref int top, ref int left)
{
int srch = srcimg.Rows, srcw = srcimg.Cols;
newh = inpHeight;
neww = inpWidth;
Mat dstimg = new Mat();
if (keep_ratio && srch != srcw)
{
float hw_scale = (float)srch / srcw;
if (hw_scale > 1)
{
newh = inpHeight;
neww = (int)(inpWidth / hw_scale);
Cv2.Resize(srcimg, dstimg, new OpenCvSharp.Size(neww, newh));
left = (int)((inpWidth - neww) * 0.5);
Cv2.CopyMakeBorder(dstimg, dstimg, 0, 0, left, inpWidth - neww - left, BorderTypes.Constant, 0);
}
else
{
newh = (int)(inpHeight * hw_scale);
neww = inpWidth;
Cv2.Resize(srcimg, dstimg, new OpenCvSharp.Size(neww, newh));
top = (int)((inpHeight - newh) * 0.5);
Cv2.CopyMakeBorder(dstimg, dstimg, top, inpHeight - newh - top, 0, 0, BorderTypes.Constant, 0);
}
}
else
{
Cv2.Resize(srcimg, dstimg, new OpenCvSharp.Size(neww, newh));
}
return dstimg;
}

unsafe private void button2_Click(object sender, EventArgs e)
{
if (image_path == "")
{
return;
}

stopwatch.Restart();
image = new Mat(image_path);
result_image = image.Clone();

int newh = 0, neww = 0, padh = 0, padw = 0;
Mat img = resize_image(image, ref newh, ref neww, ref padh, ref padw);
Mat blob = new Mat();

BN_image = CvDnn.BlobFromImage(img, 1 / 128.0, new OpenCvSharp.Size(inpWidth, inpHeight), new Scalar(127.5, 127.5, 127.5), true, false);

opencv_net.SetInput(BN_image);

Mat[] outs = new Mat[9] { new Mat(), new Mat(), new Mat(), new Mat(), new Mat(), new Mat(), new Mat(), new Mat(), new Mat() };
string[] outBlobNames = opencv_net.GetUnconnectedOutLayersNames();
opencv_net.Forward(outs, outBlobNames);

//generate proposals
List<float> confidences = new List<float>();
List boxes = new List();
List> landmarks = new List>();
float ratioh = (float)image.Rows / newh, ratiow = (float)image.Cols / neww;
int n = 0, i = 0, j = 0, k = 0, l = 0;
for (n = 0; n < 3; n++)
{
int num_grid_x = (int)(inpWidth / stride[n]);
int num_grid_y = (int)(inpHeight / stride[n]);
float* pdata_score = (float*)outs[n * 3].Data; //score
float* pdata_bbox = (float*)outs[n * 3 + 1].Data; //bounding box
float* pdata_kps = (float*)outs[n * 3 + 2].Data; //face landmark
for (i = 0; i < num_grid_y; i++)
{
for (j = 0; j < num_grid_x; j++)
{
for (k = 0; k < 4; k++)
{
if (pdata_score[0] > confThreshold)
{
int xmin = (int)(((j - pdata_bbox[0]) * stride[n] - padw) * ratiow);
int ymin = (int)(((i - pdata_bbox[1]) * stride[n] - padh) * ratioh);
int width = (int)((pdata_bbox[2] + pdata_bbox[0]) * stride[n] * ratiow);
int height = (int)((pdata_bbox[3] + pdata_bbox[1]) * stride[n] * ratioh);
confidences.Add(pdata_score[0]);
boxes.Add(new Rect(xmin, ymin, width, height));
List landmark = new List();
for (l = 0; l < 8; l += 2)
{
landmark.Add((int)(((j + pdata_kps[l]) * stride[n] - padw) * ratiow));
landmark.Add((int)(((i + pdata_kps[l + 1]) * stride[n] - padh) * ratioh));
}
landmarks.Add(landmark);
}
pdata_score++;
pdata_bbox += 4;
pdata_kps += 8;
}
}
}
}
int[] indices;
CvDnn.NMSBoxes(boxes, confidences, confThreshold, nmsThreshold, out indices);
//draw bbox and kps
for (i = 0; i < indices.Length; ++i)
{
int idx = indices[i];
Rect box = boxes[idx];
Cv2.Rectangle(result_image, new OpenCvSharp.Point(box.X, box.Y), new OpenCvSharp.Point(box.X + box.Width, box.Y + box.Height), new Scalar(0, 0, 255), 2);
for (k = 0; k < 8; k += 2)
{
Cv2.Circle(result_image, new OpenCvSharp.Point(landmarks[idx][k], landmarks[idx][k + 1]), 10, new Scalar(0, 255, 0), -1);
}
//Get the label for the class name and its confidence
string label = confidences[idx].ToString("P2");
//Display the label at the top of the bounding box
int baseLine;
OpenCvSharp.Size labelSize = Cv2.GetTextSize(label, HersheyFonts.HersheySimplex, 0.5, 2, out baseLine);
int top = Math.Max(box.Y, labelSize.Height);
Cv2.PutText(result_image, label, new OpenCvSharp.Point(box.X, top - 10), HersheyFonts.HersheySimplex, 1, new Scalar(0, 255, 0), 2);
}

stopwatch.Stop();
double costTime = stopwatch.Elapsed.TotalMilliseconds;

textBox1.Text = $"耗时:{costTime:F2}ms";
pictureBox2.Image = new Bitmap(result_image.ToMemoryStream());
}

private void button3_Click(object sender, EventArgs e)
{
if (pictureBox2.Image == )
{
return;
}
Bitmap output = new Bitmap(pictureBox2.Image);
var sdf = new SaveFileDialog();
sdf.Title = "保存";
sdf.Filter = "Images (*.jpg)|*.jpg|Images (*.png)|*.png|Images (*.bmp)|*.bmp";
if (sdf.ShowDialog() == DialogResult.OK)
{
switch (sdf.FilterIndex)
{
case 1:
{
output.Save(sdf.FileName, ImageFormat.Jpeg);
break;
}
case 2:
{
output.Save(sdf.FileName, ImageFormat.Png);
break;
}
case 3:
{
output.Save(sdf.FileName, ImageFormat.Bmp);
break;
}
}
MessageBox.Show("保存成功,位置:" + sdf.FileName);
}
}
}
}

参考

https://github.com/hpc203/cv_resnet_carddetection_scrfd34gkps-opencv-dnn



相关推荐

Github霸榜的SpringBoot全套学习教程,从入门到实战,内容超详细

前言...

SpringBoot+LayUI后台管理系统开发脚手架

源码获取方式:关注,转发之后私信回复【源码】即可免费获取到!项目简介本项目本着避免重复造轮子的原则,建立一套快速开发JavaWEB项目(springboot-mini),能满足大部分后台管理系统基础开...

Spring Boot+Vue全栈开发实战,中文版高清PDF资源

SpringBoot+Vue全栈开发实战,中文高清PDF资源,需要的可以私我:)SpringBoot致力于简化开发配置并为企业级开发提供一系列非业务性功能,而Vue则采用数据驱动视图的方式将程序...

2021年超详细的java学习路线总结—纯干货分享

本文整理了java开发的学习路线和相关的学习资源,非常适合零基础入门java的同学,希望大家在学习的时候,能够节省时间。纯干货,良心推荐!第一阶段:Java基础...

探秘Spring Cache:让Java应用飞起来的秘密武器

探秘SpringCache:让Java应用飞起来的秘密武器在当今快节奏的软件开发环境中,性能优化显得尤为重要。SpringCache作为Spring框架的一部分,为我们提供了强大的缓存管理能力,让...

3,从零开始搭建SSHM开发框架(集成Spring MVC)

目录本专题博客已共享在(这个可能会更新的稍微一些)https://code.csdn.net/yangwei19680827/maven_sshm_blog...

Spring Boot中如何使用缓存?超简单

SpringBoot中的缓存可以减少从数据库重复获取数据或执行昂贵计算的需要,从而显著提高应用程序的性能。SpringBoot提供了与各种缓存提供程序的集成,您可以在应用程序中轻松配置和使用缓...

我敢保证,全网没有再比这更详细的Java知识点总结了,送你啊

接下来你看到的将是全网最详细的Java知识点总结,全文分为三大部分:Java基础、Java框架、Java+云数据小编将为大家仔细讲解每大部分里面的详细知识点,别眨眼,从小白到大佬、零基础到精通,你绝...

1,从零开始搭建SSHM开发框架(环境准备)

目录本专题博客已共享在https://code.csdn.net/yangwei19680827/maven_sshm_blog1,从零开始搭建SSHM开发框架(环境准备)...

做一个适合二次开发的低代码平台,把程序员从curd中解脱出来-1

干程序员也有好长时间了,大多数时间都是在做curd。现在想做一个通用的curd平台直接将我们解放出来;把核心放在业务处理中。用过代码生成器,在数据表设计好之后使用它就可以生成需要的controller...

设计一个高性能Java Web框架(java做网站的框架)

设计一个高性能JavaWeb框架在当今互联网高速发展的时代,构建高性能的JavaWeb框架对于提升用户体验至关重要。本文将从多个角度探讨如何设计这样一个框架,让我们一起进入这段充满挑战和乐趣的旅程...

【推荐】强&amp;牛!一款开源免费的功能强大的代码生成器系统!

今天,给大家推荐一个代码生成器系统项目,这个项目目前收获了5.3KStar,个人觉得不错,值得拿出来和大家分享下。这是我目前见过最好的代码生成器系统项目。功能完整,代码结构清晰。...

Java面试题及答案总结(2025版持续更新)

大家好,我是Java面试分享最近很多小伙伴在忙着找工作,给大家整理了一份非常全面的Java面试场景题及答案。...

Java开发网站架构演变过程-从单体应用到微服务架构详解

Java开发网站架构演变过程,到目前为止,大致分为5个阶段,分别为单体架构、集群架构、分布式架构、SOA架构和微服务架构。下面玄武老师来给大家详细介绍下这5种架构模式的发展背景、各自优缺点以及涉及到的...

本地缓存GuavaCache(一)(guava本地缓存原理)

在并发量、吞吐量越来越大的情况下往往是离不开缓存的,使用缓存能减轻数据库的压力,临时存储数据。根据不同的场景选择不同的缓存,分布式缓存有Redis,Memcached、Tair、EVCache、Aer...