百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术教程 > 正文

Opencv 图像读取与保存问题

csdh11 2025-04-23 23:18 17 浏览

本文仅对 Opencv图像读取与保存进行阐述,重在探讨图像读取与保存过程中应注意的细节问题。

1 图像读取

首先看一下,imread函数的声明:

// C++: Mat based
Mat imread(const string& filename, int flags=1 );

// C: IplImage based
IplImage* cvLoadImage(const char* filename, int iscolor=CV_LOAD_IMAGE_COLOR );

// C: CvMat based
CvMat* cvLoadImageM(const char* filename, int iscolor=CV_LOAD_IMAGE_COLOR );

此处,就不列出python的函数声明。随着2.x和3.x版本号不断更新, Opencv的C++版本号数据结构和C版本号有较大差异,前者降低了指针的大量使用。使用方法更加便捷,因此建议多使用前者。以C++版本号函数进行分析,形參列表包含:

  • filename : 待载入图像(包含:文件路径和文件名称。图像在project默认路径下的可省略文件路径);
  • flags : 标志符,指定图像载入颜色类型。默认值为1:
    • IMREAD_UNCHANGED / CV_LOAD_IMAGE_UNCHANGED :不加改变的载入原图。
    • IMREAD_GRAYSCALE / CV_LOAD_IMAGE_GRAYSCALE :图像转为灰度图(GRAY,1通道)。
    • IMREAD_COLOR / CV_LOAD_IMAGE_COLOR :图像转为彩色图(BGR,3通道)。
    • IMREAD_ANYDEPTH / CV_LOAD_IMAGE_ANYDEPTH :不论什么位深度。假设载入的图像不是16-bit位图或者32-bit位图。则转化为8-bit位图。
    • IMREAD_ANYCOLOR / CV_LOAD_IMAGE_ANYCOLOR :不论什么彩色。单独使用的时候等价于 IMREAD_UNCHANGED / CV_LOAD_IMAGE_UNCHANGED
    • > 0 :返回3通道的彩色图,可是假设是4通道(RGBA)。当中Alpha须要保留的话,不建议这么使用。由于一旦这么使用。就会导致Alpha通道被剥离掉,此时建议使用负值。
    • = 0 :返回灰度图像。
    • < 0 :返回具有Alpha通道的图像。

假设你喜欢使用imread("file.jpg")缺省參数的形式载入图像。务必要留意你所载入后的图像可能已经不是你原本想要的图像了。

Opencv源代码枚举类型中也能够看到上述标识符含义:

// highgui.hpp
enum
{
    // 8bit, color or not
    IMREAD_UNCHANGED  =-1,
    // 8bit, gray
    IMREAD_GRAYSCALE  =0,
    // ?, color
    IMREAD_COLOR      =1,
    // any depth, ?
    IMREAD_ANYDEPTH   =2,
    // ?, any color
    IMREAD_ANYCOLOR   =4
};

// highui_c.h
enum
{
/* 8bit, color or not */
    CV_LOAD_IMAGE_UNCHANGED  =-1,
/* 8bit, gray */
    CV_LOAD_IMAGE_GRAYSCALE  =0,
/* ?
, color */
    CV_LOAD_IMAGE_COLOR      =1,
/* any depth, ? */
    CV_LOAD_IMAGE_ANYDEPTH   =2,
/* ?, any color */
    CV_LOAD_IMAGE_ANYCOLOR   =4
};

Opencv已经支持眼下非常多图像格式,可是并不是所有。

主要包含:

  • Windows bitmaps -> *.bmp, *.dib (always supported)
  • JPEG files -> *.jpeg, *.jpg, *.jpe (see the Notes section)
  • JPEG 2000 files -> *.jp2,*.jpf,*.jpx (see the Notes section)
  • Portable Network Graphics -> *.png (see the Notes section)
  • WebP -> *.webp (see the Notes section)
  • Portable image format -> *.pbm, *.pgm, *.ppm (always supported)
  • Sun rasters -> *.sr, *.ras (always supported)
  • TIFF files -> *.tiff, *.tif (see the Notes section)
  • Notes
    • 1 The function determines the type of an image by the content, not by the file extension.
    • 2 On Microsoft Windows* OS and MacOSX*, the codecs shipped with an OpenCV image (libjpeg, libpng, libtiff, and libjasper) are used by default. So, OpenCV can always read JPEGs, PNGs, and TIFFs. On MacOSX, there is also an option to use native MacOSX image readers. But beware that currently these native image loaders give images with different pixel values because of the color management embedded into MacOSX.
    • 3 On Linux*, BSD flavors and other Unix-like open-source operating systems, OpenCV looks for codecs supplied with an OS image. Install the relevant packages (do not forget the development files, for example, “libjpeg-dev”, in Debian* and Ubuntu*) to get the codec support or turn on the OPENCV_BUILD_3RDPARTY_LIBS flag in CMake.
    • 4 In the case of color images, the decoded images will have the channels stored in B G R order.

对于常见的支持4通道的图像格式来说, Opencv读取结果是有差异的:

// 1.tif, 1.jp2 and 1.png are color images with 4 channels: R, G, B, A
cv::Mat imageTif = cv::imread("E:\\1.tif"); // the default flags is 1
cv::Mat imageJp2 = cv::imread("E:\\1.jp2"); // the default flags is 1
cv::Mat imagePng = cv::imread("E:\\1.png"); // the default flags is 1
std::cout << imageTif.channels() << std::endl; // prints 3
std::cout << imageJp2.channels() << std::endl; // prints 3
std::cout << imagePng.channels() << std::endl; // prints 3

cv::Mat imageTif2 = cv::imread("E:\\1.tif", -1); // flags = -1
cv::Mat imageJp22 = cv::imread("E:\\1.jp2", -1);
cv::Mat imagePng2 = cv::imread("E:\\1.png", -1);
std::cout << imageTif2.channels() << std::endl; // prints 3
std::cout << imageJp22.channels() << std::endl; // prints 3
std::cout << imagePng2.channels() << std::endl; // prints 4

由此可见,眼下 Opencv能够直接读取4通道图像并保留Alpha通道的貌似仅仅有PNG格式,对于非PNG格式数据,须要保留Alpha通道的应用,假设坚持使用 Opencv库,建议转格式吧~

2 图像存储

首先来看,imwrite函数的声明:

// c++: Mat based
bool imwrite(const string& filename, InputArray img, const vector<int>& params=vector<int>() );

// C: CvMat and IplImage based
int cvSaveImage(const char* filename, const CvArr* image, const int* params=0 );

仍旧以C++版本号为例。其形參列表为:

  • filename:待保存图像名(包含:文件路径和文件名称,图像在project默认路径下的可省略文件路径);
  • img:待保存的图像对象。
  • params :特定图像存储编码參数设置。以相似pairs类型的方式。(paramId_1, paramValue_1)。(paramId_2, paramValue_2)…,当中paramId_1就是标志符值。paramValue_1标识符值相应的兴许參数设置:
vector<int> compression_params;
compression_params.push_back(CV_IMWRITE_PNG_COMPRESSION); // paramId_1, png compression
compression_params.push_back(9);                          // paramValue_2, compression level is 9 

Opencv中。主要对JPEG,PNG和PXM的编码方式进行了特别声明:

// highgui.hpp
enum
{
    IMWRITE_JPEG_QUALITY =1,         // quality from 0 to 100, default value is 95. (The higher is the better)
    IMWRITE_PNG_COMPRESSION =16,     // compression level from 0 to 9, default value is 3. (A higher value means a smaller size and longer compression time. Default value is 3.)
    IMWRITE_PNG_STRATEGY =17,
    IMWRITE_PNG_BILEVEL =18,
    IMWRITE_PNG_STRATEGY_DEFAULT =0,
    IMWRITE_PNG_STRATEGY_FILTERED =1,
    IMWRITE_PNG_STRATEGY_HUFFMAN_ONLY =2,
    IMWRITE_PNG_STRATEGY_RLE =3,
    IMWRITE_PNG_STRATEGY_FIXED =4,
    IMWRITE_PXM_BINARY =32          // binary format flag: 0 or 1, default value is 1.
};

// highui_c.h
enum
{
    CV_IMWRITE_JPEG_QUALITY =1,
    CV_IMWRITE_PNG_COMPRESSION =16,
    CV_IMWRITE_PNG_STRATEGY =17,
    CV_IMWRITE_PNG_BILEVEL =18,
    CV_IMWRITE_PNG_STRATEGY_DEFAULT =0,
    CV_IMWRITE_PNG_STRATEGY_FILTERED =1,
    CV_IMWRITE_PNG_STRATEGY_HUFFMAN_ONLY =2,
    CV_IMWRITE_PNG_STRATEGY_RLE =3,
    CV_IMWRITE_PNG_STRATEGY_FIXED =4,
    CV_IMWRITE_PXM_BINARY =32
};

上述的标识符含义,显而易见,就不累述。

值得强调的是,imwrite函数支持存储的图像类型是有限的仅仅包含:1。3,4通道的图像,可是对于不同的图像格式。也是有差异的:

  • 对于单通道8-bit位图(或者16-bit位图( CV_16U/CV_16UC1 的PNG,JPEG 2000 和TIFF))或者3通道(通道顺序为:B G R )的图像,imwrite函数是都支持的。
  • 对于格式,或者位深或者通道顺序与上面不一致的。能够使用函数Mat::convertTo()和cvtColor()函数进行转换后,再保存。当然,也能够使用通用的方法利用FileStorageI/O操作。将图像存为XML或YAML格式。
  • 对于PNG图像,能够保存其Alpha通道,创建一个8-bit或者16-bit 4通道的位图(通道顺序为:B G R A )。假设是全透明的Alpha通道设置为0,反之不透明设置为255/65535。

对于多通道图像,假设想对其每一个通道单独进行保存,当然也是可行的。一方面自己能够依据图像的信息和图层信息写出相应的存储函数,还有一方面 Opencv也提供了专门的函数split能够将图像的每一个通道提取出保存到vector中:



PNG原图

cv::Mat img = imread( "C:\\Users\\Leo\\Desktop\\Panda.png", CV_LOAD_IMAGE_UNCHANGED );

std::vector<cv::Mat> imageChannels;
cv::split( img, imageChannels );
cv::imwrite("E:\\0.jpg", imageChannels[0]);
cv::imwrite("E:\\1.jpg", imageChannels[1]);
cv::imwrite("E:\\2.jpg", imageChannels[2]);
cv::imwrite("E:\\3.jpg", imageChannels[3]);


B

G

R

A


通道分离保存结果

附上 Opencv文档源代码:

#include <vector>
#include <stdio.h>
#include <opencv2/opencv.hpp>

using namespace cv;
using namespace std;

void createAlphaMat(Mat &mat)
{
    CV_Assert(mat.channels() == 4);
    for (int i = 0; i < mat.rows; ++i) {
        for (int j = 0; j < mat.cols; ++j) {
            Vec4b& bgra = mat.at<Vec4b>(i, j);
            bgra[0] = UCHAR_MAX; // Blue
            bgra[1] = saturate_cast<uchar>((float (mat.cols - j)) / ((float)mat.cols) * UCHAR_MAX); // Green
            bgra[2] = saturate_cast<uchar>((float (mat.rows - i)) / ((float)mat.rows) * UCHAR_MAX); // Red
            bgra[3] = saturate_cast<uchar>(0.5 * (bgra[1] + bgra[2])); // Alpha
        }
    }
}

int main(int argv, char **argc)
{
    // Create mat with alpha channel
    Mat mat(480, 640, CV_8UC4);
    createAlphaMat(mat);

    vector<int> compression_params;
    compression_params.push_back(CV_IMWRITE_PNG_COMPRESSION);
    compression_params.push_back(9);

    try {
        imwrite("alpha.png", mat, compression_params);
    }
    catch (runtime_error& ex) {
        fprintf(stderr, "Exception converting image to PNG format: %s\n", ex.what());
        return 1;
    }

    fprintf(stdout, "Saved PNG file with alpha data.\n");
    return 0;
}

执行结果为:

好文要顶 关注我 收藏该文 微信分享

相关推荐

Github霸榜的SpringBoot全套学习教程,从入门到实战,内容超详细

前言...

SpringBoot+LayUI后台管理系统开发脚手架

源码获取方式:关注,转发之后私信回复【源码】即可免费获取到!项目简介本项目本着避免重复造轮子的原则,建立一套快速开发JavaWEB项目(springboot-mini),能满足大部分后台管理系统基础开...

Spring Boot+Vue全栈开发实战,中文版高清PDF资源

SpringBoot+Vue全栈开发实战,中文高清PDF资源,需要的可以私我:)SpringBoot致力于简化开发配置并为企业级开发提供一系列非业务性功能,而Vue则采用数据驱动视图的方式将程序...

2021年超详细的java学习路线总结—纯干货分享

本文整理了java开发的学习路线和相关的学习资源,非常适合零基础入门java的同学,希望大家在学习的时候,能够节省时间。纯干货,良心推荐!第一阶段:Java基础...

探秘Spring Cache:让Java应用飞起来的秘密武器

探秘SpringCache:让Java应用飞起来的秘密武器在当今快节奏的软件开发环境中,性能优化显得尤为重要。SpringCache作为Spring框架的一部分,为我们提供了强大的缓存管理能力,让...

3,从零开始搭建SSHM开发框架(集成Spring MVC)

目录本专题博客已共享在(这个可能会更新的稍微一些)https://code.csdn.net/yangwei19680827/maven_sshm_blog...

Spring Boot中如何使用缓存?超简单

SpringBoot中的缓存可以减少从数据库重复获取数据或执行昂贵计算的需要,从而显著提高应用程序的性能。SpringBoot提供了与各种缓存提供程序的集成,您可以在应用程序中轻松配置和使用缓...

我敢保证,全网没有再比这更详细的Java知识点总结了,送你啊

接下来你看到的将是全网最详细的Java知识点总结,全文分为三大部分:Java基础、Java框架、Java+云数据小编将为大家仔细讲解每大部分里面的详细知识点,别眨眼,从小白到大佬、零基础到精通,你绝...

1,从零开始搭建SSHM开发框架(环境准备)

目录本专题博客已共享在https://code.csdn.net/yangwei19680827/maven_sshm_blog1,从零开始搭建SSHM开发框架(环境准备)...

做一个适合二次开发的低代码平台,把程序员从curd中解脱出来-1

干程序员也有好长时间了,大多数时间都是在做curd。现在想做一个通用的curd平台直接将我们解放出来;把核心放在业务处理中。用过代码生成器,在数据表设计好之后使用它就可以生成需要的controller...

设计一个高性能Java Web框架(java做网站的框架)

设计一个高性能JavaWeb框架在当今互联网高速发展的时代,构建高性能的JavaWeb框架对于提升用户体验至关重要。本文将从多个角度探讨如何设计这样一个框架,让我们一起进入这段充满挑战和乐趣的旅程...

【推荐】强&amp;牛!一款开源免费的功能强大的代码生成器系统!

今天,给大家推荐一个代码生成器系统项目,这个项目目前收获了5.3KStar,个人觉得不错,值得拿出来和大家分享下。这是我目前见过最好的代码生成器系统项目。功能完整,代码结构清晰。...

Java面试题及答案总结(2025版持续更新)

大家好,我是Java面试分享最近很多小伙伴在忙着找工作,给大家整理了一份非常全面的Java面试场景题及答案。...

Java开发网站架构演变过程-从单体应用到微服务架构详解

Java开发网站架构演变过程,到目前为止,大致分为5个阶段,分别为单体架构、集群架构、分布式架构、SOA架构和微服务架构。下面玄武老师来给大家详细介绍下这5种架构模式的发展背景、各自优缺点以及涉及到的...

本地缓存GuavaCache(一)(guava本地缓存原理)

在并发量、吞吐量越来越大的情况下往往是离不开缓存的,使用缓存能减轻数据库的压力,临时存储数据。根据不同的场景选择不同的缓存,分布式缓存有Redis,Memcached、Tair、EVCache、Aer...