Flink SQL Client综合实战(flink原理深入与编程实战下载)
csdh11 2025-05-02 17:17 7 浏览
在《Flink SQL Client初探》一文中,我们体验了Flink SQL Client的基本功能,今天来通过实战更深入学习和体验Flink SQL;
实战内容
本次实战主要是通过Flink SQL Client消费kafka的实时消息,再用各种SQL操作对数据进行查询统计,内容汇总如下:
- DDL创建Kafka表
- 窗口统计;
- 数据写入ElasticSearch
- 联表操作
版本信息
数据源准备
- 本次实战用的数据,来源是阿里云天池公开数据集,其中有一份淘宝用户行为数据集,获取方式请参考《准备数据集用于flink学习》
- 获取到数据集文件后转成kafka消息发出,这样我们使用Flink SQL时就按照实时消费kafka消息的方式来操作,具体的操作方式请参考《将CSV的数据发送到kafka》
- 上述操作完成后,一百零四万条淘宝用户行为数据就会通过kafka消息顺序发出,咱们的实战就有不间断实时数据可用 了,消息内容如下:
{"user_id":1004080,"item_id":2258662,"category_id":79451,"behavior":"pv","ts":"2017-11-24T23:47:47Z"}
{"user_id":100814,"item_id":5071478,"category_id":1107469,"behavior":"pv","ts":"2017-11-24T23:47:47Z"}
{"user_id":114321,"item_id":4306269,"category_id":4756105,"behavior":"pv","ts":"2017-11-24T23:47:48Z"}
- 上述消息中每个字段的含义如下表:
jar准备
实战过程中要用到下面这五个jar文件:
- flink-jdbc_2.11-1.10.0.jar
- flink-json-1.10.0.jar
- flink-sql-connector-elasticsearch6_2.11-1.10.0.jar
- flink-sql-connector-kafka_2.11-1.10.0.jar
- mysql-connector-java-5.1.48.jar
- 我已将这些文件打包上传到GitHub,下载地址:https://raw.githubusercontent.com/zq2599/blog_demos/master/files/sql_lib.zip
- 请在flink安装目录下新建文件夹sql_lib,然后将这五个jar文件放进去;
Elasticsearch准备
如果您装了docker和docker-compose,那么下面的命令可以快速部署elasticsearch和head工具:
wget https://raw.githubusercontent.com/zq2599/blog_demos/master/elasticsearch_docker_compose/docker-compose.yml && \
docker-compose up -d
准备完毕,开始操作吧;
DDL创建Kafka表
- 进入flink目录,启动flink:bin/start-cluster.sh
- 启动Flink SQL Client:bin/sql-client.sh embedded -l sql_lib
- 启动成功显示如下:
- 执行以下命令即可创建kafka表,请按照自己的信息调整参数:
CREATE TABLE user_behavior (
user_id BIGINT,
item_id BIGINT,
category_id BIGINT,
behavior STRING,
ts TIMESTAMP(3),
proctime as PROCTIME(), -- 处理时间列
WATERMARK FOR ts as ts - INTERVAL '5' SECOND -- 在ts上定义watermark,ts成为事件时间列
) WITH (
'connector.type' = 'kafka', -- kafka connector
'connector.version' = 'universal', -- universal 支持 0.11 以上的版本
'connector.topic' = 'user_behavior', -- kafka topic
'connector.startup-mode' = 'earliest-offset', -- 从起始 offset 开始读取
'connector.properties.zookeeper.connect' = '192.168.50.43:2181', -- zk 地址
'connector.properties.bootstrap.servers' = '192.168.50.43:9092', -- broker 地址
'format.type' = 'json' -- 数据源格式为 json
);
- 执行SELECT * FROM user_behavior;看看原始数据,如果消息正常应该和下图类似:
窗口统计
- 下面的SQL是以每十分钟为窗口,统计每个窗口内的总浏览数,TUMBLE_START返回的数据格式是timestamp,这里再调用DATE_FORMAT函数将其格式化成了字符串:
SELECT DATE_FORMAT(TUMBLE_START(ts, INTERVAL '10' MINUTE), 'yyyy-MM-dd hh:mm:ss'),
DATE_FORMAT(TUMBLE_END(ts, INTERVAL '10' MINUTE), 'yyyy-MM-dd hh:mm:ss'),
COUNT(*)
FROM user_behavior
WHERE behavior = 'pv'
GROUP BY TUMBLE(ts, INTERVAL '10' MINUTE);
- 得到数据如下所示:
数据写入ElasticSearch
- 确保elasticsearch已部署好;
- 执行以下语句即可创建es表,请按照您自己的es信息调整下面的参数:
CREATE TABLE pv_per_minute (
start_time STRING,
end_time STRING,
pv_cnt BIGINT
) WITH (
'connector.type' = 'elasticsearch', -- 类型
'connector.version' = '6', -- elasticsearch版本
'connector.hosts' = 'http://192.168.133.173:9200', -- elasticsearch地址
'connector.index' = 'pv_per_minute', -- 索引名,相当于数据库表名
'connector.document-type' = 'user_behavior', -- type,相当于数据库库名
'connector.bulk-flush.max-actions' = '1', -- 每条数据都刷新
'format.type' = 'json', -- 输出数据格式json
'update-mode' = 'append'
);
- 执行以下语句,就会将每分钟的pv总数写入es的pv_per_minute索引:
INSERT INTO pv_per_minute
SELECT DATE_FORMAT(TUMBLE_START(ts, INTERVAL '1' MINUTE), 'yyyy-MM-dd hh:mm:ss') AS start_time,
DATE_FORMAT(TUMBLE_END(ts, INTERVAL '1' MINUTE), 'yyyy-MM-dd hh:mm:ss') AS end_time,
COUNT(*) AS pv_cnt
FROM user_behavior
WHERE behavior = 'pv'
GROUP BY TUMBLE(ts, INTERVAL '1' MINUTE);
- 用es-head查看,发现数据已成功写入:
联表操作
- 当前user_behavior表的category_id表示商品类目,例如11120表示计算机书籍,61626表示牛仔裤,本次实战的数据集中,这样的类目共有五千多种;
- 如果我们将这五千多种类目分成6个大类,例如11120属于教育类,61626属于服装类,那么应该有个大类和类目的关系表;
- 这个大类和类目的关系表在MySQL创建,表名叫category_info,建表语句如下:
CREATE TABLE `category_info`(
`id` int(11) unsigned NOT NULL AUTO_INCREMENT,
`parent_id` bigint ,
`category_id` bigint ,
PRIMARY KEY ( `id` )
) ENGINE=InnoDB AUTO_INCREMENT=5 DEFAULT CHARSET=utf8 COLLATE=utf8_bin;
- 表category_info所有数据来自对原始数据中category_id字段的提取,并且随机将它们划分为6个大类,该表的数据请在我的GitHub下载:https://raw.githubusercontent.com/zq2599/blog_demos/master/files/category_info.sql
- 请在MySQL上建表category_info,并将上述数据全部写进去;
- 在Flink SQL Client执行以下语句创建这个维表,mysql信息请按您自己配置调整:
CREATE TABLE category_info (
parent_id BIGINT, -- 商品大类
category_id BIGINT -- 商品详细类目
) WITH (
'connector.type' = 'jdbc',
'connector.url' = 'jdbc:mysql://192.168.50.43:3306/flinkdemo',
'connector.table' = 'category_info',
'connector.driver' = 'com.mysql.jdbc.Driver',
'connector.username' = 'root',
'connector.password' = '123456',
'connector.lookup.cache.max-rows' = '5000',
'connector.lookup.cache.ttl' = '10min'
);
- 尝试联表查询:
SELECT U.user_id, U.item_id, U.behavior, C.parent_id, C.category_id
FROM user_behavior AS U LEFT JOIN category_info FOR SYSTEM_TIME AS OF U.proctime AS C
ON U.category_id = C.category_id;
- 如下图,联表查询成功,每条记录都能对应大类:
- 再试试联表统计,每个大类的总浏览量:
SELECT C.parent_id, COUNT(*) AS pv_count
FROM user_behavior AS U LEFT JOIN category_info FOR SYSTEM_TIME AS OF U.proctime AS C
ON U.category_id = C.category_id
WHERE behavior = 'pv'
GROUP BY C.parent_id;
- 如下图,数据是动态更新的:
- 执行以下语句,可以在统计时将大类ID转成中文名:
SELECT CASE C.parent_id
WHEN 1 THEN '服饰鞋包'
WHEN 2 THEN '家装家饰'
WHEN 3 THEN '家电'
WHEN 4 THEN '美妆'
WHEN 5 THEN '母婴'
WHEN 6 THEN '3C数码'
ELSE '其他'
END AS category_name,
COUNT(*) AS pv_count
FROM user_behavior AS U LEFT JOIN category_info FOR SYSTEM_TIME AS OF U.proctime AS C
ON U.category_id = C.category_id
WHERE behavior = 'pv'
GROUP BY C.parent_id;
效果如下图:
至此,我们借助Flink SQL Client体验了Flink SQL丰富的功能,如果您也在学习Flink SQL,希望本文能给您一些参考;
欢迎关注我的公众号:程序员欣宸
相关推荐
- SpringBoot+LayUI后台管理系统开发脚手架
-
源码获取方式:关注,转发之后私信回复【源码】即可免费获取到!项目简介本项目本着避免重复造轮子的原则,建立一套快速开发JavaWEB项目(springboot-mini),能满足大部分后台管理系统基础开...
- Spring Boot+Vue全栈开发实战,中文版高清PDF资源
-
SpringBoot+Vue全栈开发实战,中文高清PDF资源,需要的可以私我:)SpringBoot致力于简化开发配置并为企业级开发提供一系列非业务性功能,而Vue则采用数据驱动视图的方式将程序...
- 2021年超详细的java学习路线总结—纯干货分享
-
本文整理了java开发的学习路线和相关的学习资源,非常适合零基础入门java的同学,希望大家在学习的时候,能够节省时间。纯干货,良心推荐!第一阶段:Java基础...
- 探秘Spring Cache:让Java应用飞起来的秘密武器
-
探秘SpringCache:让Java应用飞起来的秘密武器在当今快节奏的软件开发环境中,性能优化显得尤为重要。SpringCache作为Spring框架的一部分,为我们提供了强大的缓存管理能力,让...
- 3,从零开始搭建SSHM开发框架(集成Spring MVC)
-
目录本专题博客已共享在(这个可能会更新的稍微一些)https://code.csdn.net/yangwei19680827/maven_sshm_blog...
- Spring Boot中如何使用缓存?超简单
-
SpringBoot中的缓存可以减少从数据库重复获取数据或执行昂贵计算的需要,从而显著提高应用程序的性能。SpringBoot提供了与各种缓存提供程序的集成,您可以在应用程序中轻松配置和使用缓...
- 我敢保证,全网没有再比这更详细的Java知识点总结了,送你啊
-
接下来你看到的将是全网最详细的Java知识点总结,全文分为三大部分:Java基础、Java框架、Java+云数据小编将为大家仔细讲解每大部分里面的详细知识点,别眨眼,从小白到大佬、零基础到精通,你绝...
- 1,从零开始搭建SSHM开发框架(环境准备)
-
目录本专题博客已共享在https://code.csdn.net/yangwei19680827/maven_sshm_blog1,从零开始搭建SSHM开发框架(环境准备)...
- 做一个适合二次开发的低代码平台,把程序员从curd中解脱出来-1
-
干程序员也有好长时间了,大多数时间都是在做curd。现在想做一个通用的curd平台直接将我们解放出来;把核心放在业务处理中。用过代码生成器,在数据表设计好之后使用它就可以生成需要的controller...
- 设计一个高性能Java Web框架(java做网站的框架)
-
设计一个高性能JavaWeb框架在当今互联网高速发展的时代,构建高性能的JavaWeb框架对于提升用户体验至关重要。本文将从多个角度探讨如何设计这样一个框架,让我们一起进入这段充满挑战和乐趣的旅程...
- 【推荐】强&牛!一款开源免费的功能强大的代码生成器系统!
-
今天,给大家推荐一个代码生成器系统项目,这个项目目前收获了5.3KStar,个人觉得不错,值得拿出来和大家分享下。这是我目前见过最好的代码生成器系统项目。功能完整,代码结构清晰。...
- Java面试题及答案总结(2025版持续更新)
-
大家好,我是Java面试分享最近很多小伙伴在忙着找工作,给大家整理了一份非常全面的Java面试场景题及答案。...
- Java开发网站架构演变过程-从单体应用到微服务架构详解
-
Java开发网站架构演变过程,到目前为止,大致分为5个阶段,分别为单体架构、集群架构、分布式架构、SOA架构和微服务架构。下面玄武老师来给大家详细介绍下这5种架构模式的发展背景、各自优缺点以及涉及到的...
- 本地缓存GuavaCache(一)(guava本地缓存原理)
-
在并发量、吞吐量越来越大的情况下往往是离不开缓存的,使用缓存能减轻数据库的压力,临时存储数据。根据不同的场景选择不同的缓存,分布式缓存有Redis,Memcached、Tair、EVCache、Aer...
- 一周热门
- 最近发表
- 标签列表
-
- mydisktest_v298 (34)
- document.appendchild (35)
- 头像打包下载 (61)
- acmecadconverter_8.52绿色版 (39)
- word文档批量处理大师破解版 (36)
- server2016安装密钥 (33)
- mysql 昨天的日期 (37)
- parsevideo (33)
- 个人网站源码 (37)
- centos7.4下载 (33)
- mysql 查询今天的数据 (34)
- intouch2014r2sp1永久授权 (36)
- 先锋影音源资2019 (35)
- jdk1.8.0_191下载 (33)
- axure9注册码 (33)
- pts/1 (33)
- spire.pdf 破解版 (35)
- shiro jwt (35)
- sklearn中文手册pdf (35)
- itextsharp使用手册 (33)
- 凯立德2012夏季版懒人包 (34)
- 冒险岛代码查询器 (34)
- 128*128png图片 (34)
- jdk1.8.0_131下载 (34)
- dos 删除目录下所有子目录及文件 (36)