百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术教程 > 正文

分布式实时日志分析采集三种方案(实时日志收集)

csdh11 2025-04-08 13:13 18 浏览

ELK 已经成为目前最流行的集中式日志解决方案,它主要是由FilebeatLogstashElasticsearchKibana等组件组成,来共同完成实时日志的收集,存储,展示等一站式的解决方案。本文将会介绍ELK常见的架构以及相关问题的解决。

1. Filebeat:Filebeat是一款轻量级,占用服务资源非常少的数据收集引擎,它是ELK家族的新成员,可以代替Logstash作为在应用服务器端的日志收集引擎,支持将收集到的数据输出到Kafka,Redis等队列。

2. Logstash:数据收集引擎,相较于Filebeat比较重量级,但它集成了大量的插件,支持丰富的数据源收集,对收集的数据可以过滤、分析、格式化日志格式。

3. Elasticsearch:分布式数据搜索引擎,基于Apache Lucene实现,可集群,提供数据的集中式存储、分析、以及强大的数据搜索和聚合功能。

4. Kibana:数据的可视化平台,通过该web平台可以实时的查看 Elasticsearch 中的相关数据,并提供了丰富的图表统计功能。

(一)ELK常见部署架构

1.Logstash作为日志收集器

这种架构是比较原始的部署架构,在各应用服务器端分别部署一个Logstash组件,作为日志收集器,然后将Logstash收集到的数据过滤、分析、格式化处理后发送至Elasticsearch存储,最后使用Kibana进行可视化展示。这种架构不足的是:Logstash比较耗服务器资源,所以会增加应用服务器端的负载压力。


2.Filebeat作为日志收集器

该架构与第一种架构唯一不同的是:应用端日志收集器换成了Filebeat,Filebeat轻量,占用服务器资源少,所以使用Filebeat作为应用服务器端的日志收集器,一般Filebeat会配合Logstash一起使用,这种部署方式也是目前最常用的架构。

3.引入缓存队列的部署架构

该架构在第二种架构的基础上引入了Kafka消息队列(还可以是其他消息队列),将Filebeat收集到的数据发送至Kafka,然后在通过Logstasth读取Kafka中的数据,这种架构主要是解决大数据量下的日志收集方案,使用缓存队列主要是解决数据安全与均衡Logstash与Elasticsearch负载压力。

4.以上三种架构的总结

第一种部署架构由于资源占用问题,现已很少使用,目前使用最多的是第二种部署架构,至于第三种部署架构个人觉得没有必要引入消息队列,除非有其他需求,因为在数据量较大的情况下,Filebeat 使用压力敏感协议向 Logstash 或 Elasticsearch 发送数据。如果 Logstash 正在繁忙地处理数据,它会告知 Filebeat 减慢读取速度。拥塞解决后,Filebeat 将恢复初始速度并继续发送数据。

(二)问题及解决方案

1.问题:如何实现日志的多行合并功能?

系统应用中的日志一般都是以特定格式进行打印的,属于同一条日志的数据可能分多行进行打印,那么在使用ELK收集日志的时候就需要将属于同一条日志的多行数据进行合并。

解决方案:使用Filebeat或Logstash中的multiline多行合并插件来实现。在使用multiline多行合并插件的时候需要注意,不同的ELK部署架构可能multiline的使用方式也不同,如果是本文的第一种部署架构,那么multiline需要在Logstash中配置使用,如果是第二种部署架构,那么multiline需要在Filebeat中配置使用,无需再在Logstash中配置multiline。

1、multiline在Filebeat中的配置方式:

filebeat.prospectors:
-
paths:
- /home/project/elk/logs/test.log
input_type: log
multiline:
pattern: '^\['
negate: true
match: after
output:
logstash:
hosts: ["localhost:5044"]

· pattern:正则表达式

· negate:默认为false,表示匹配pattern的行合并到上一行;true表示不匹配pattern的行合并到上一行

· match:after表示合并到上一行的末尾,before表示合并到上一行的行首

如:

pattern: '\['
negate: true
match: after

该配置表示将不匹配pattern模式的行合并到上一行的末尾

2、multiline在Logstash中的配置方式

input {
beats {
port => 5044
}
}

filter {
multiline {
pattern => "%{LOGLEVEL}\s*\]"
negate => true
what => "previous"
}
}

output {
elasticsearch {
hosts => "localhost:9200"
}
}

(1)Logstash中配置的what属性值为previous,相当于Filebeat中的after,Logstash中配置的what属性值为next,相当于Filebeat中的before。(2)pattern => "%{LOGLEVEL}\s*\]" 中的LOGLEVEL是Logstash预制的正则匹配模式,预制的还有好多常用的正则匹配模式,详细请看:https://github.com/logstash-plugins/logstash-patterns-core/tree/master/patterns

2.问题:如何将Kibana中显示日志的时间字段替换为日志信息中的时间?

默认情况下,我们在Kibana中查看的时间字段与日志信息中的时间不一致,因为默认的时间字段值是日志收集时的当前时间,所以需要将该字段的时间替换为日志信息中的时间。

解决方案:使用grok分词插件与date时间格式化插件来实现在Logstash的配置文件的过滤器中配置grok分词插件与date时间格式化插件,如:

input {
beats {
port => 5044
}
}

filter {
multiline {
pattern => "%{LOGLEVEL}\s*\]\[%{YEAR}%{MONTHNUM}%{MONTHDAY}\s+%{TIME}\]"
negate => true
what => "previous"
}

grok {
match => [ "message" , "(?%{YEAR}%{MONTHNUM}%{MONTHDAY}\s+%{TIME})" ]
}

date {
match => ["customer_time", "yyyyMMdd HH:mm:ss,SSS"] //格式化时间
target => "@timestamp" //替换默认的时间字段
}
}

output {
elasticsearch {
hosts => "localhost:9200"
}
}

如要匹配的日志格式为:[DEBUG][20170811 10:07:31,359][DefaultBeanDefinitionDocumentReader:106] Loading bean definitions,解析出该日志的时间字段的方式有:① 通过引入写好的表达式文件,如表达式文件为customer_patterns,内容为:CUSTOMER_TIME %{YEAR}%{MONTHNUM}%{MONTHDAY}\s+%{TIME}

注:内容格式为:[自定义表达式名称] [正则表达式]”

然后logstash中就可以这样引用:

filter {
grok {
patterns_dir => ["
./customer-patterms/mypatterns"
] //引用表达式文件路径
match => [ "message" , "%{
CUSTOMER_TIME:customer_time}"
] //使用自定义的grok表达式
}
}

② 以配置项的方式,规则为:(?<自定义表达式名称>正则匹配规则),如:

filter {
grok {
match => [ "message" , "(?%{YEAR}%{MONTHNUM}%{MONTHDAY}\s+%{TIME})" ]
}
}

3.问题:如何在Kibana中通过选择不同的系统日志模块来查看数据

一般在Kibana中显示的日志数据混合了来自不同系统模块的数据,那么如何来选择或者过滤只查看指定的系统模块的日志数据?解决方案:新增标识不同系统模块的字段或根据不同系统模块建ES索引1、新增标识不同系统模块的字段,然后在Kibana中可以根据该字段来过滤查询不同模块的数据,这里以第二种部署架构讲解,在Filebeat中的配置内容为:

filebeat.prospectors:
-
paths:
-
/home/project/elk/logs/account.log

input_type: log
multiline:
pattern: '^\['
negate: true
match: after
fields: //新增log_from字段
log_from: account

-
paths:
-
/home/project/elk/logs/customer.log

input_type: log
multiline:
pattern: '^\['
negate: true
match: after
fields:
log_from: customer
output:
logstash:
hosts: ["localhost:5044"]

“通过新增:log_from字段来标识不同的系统模块日志”

2、根据不同的系统模块配置对应的ES索引,然后在Kibana中创建对应的索引模式匹配,即可在页面通过索引模式下拉框选择不同的系统模块数据。

filebeat.prospectors:
-
paths:
-
/home/project/elk/logs/account.log

input_type: log
multiline:
pattern: '^\['
negate: true
match: after
fields: //新增log_from字段
log_from: account
-
paths:
-
/home/project/elk/logs/customer.log

input_type: log
multiline:
pattern: '^\['
negate: true
match: after
fields:
log_from: customer
output:
logstash:
hosts: ["localhost:5044"]

这里以第二种部署架构讲解,分为两步:

① 在Filebeat中的配置内容为:

filebeat.prospectors:
-
paths:
- /home/project/elk/logs/account.log
input_type: log
multiline:
pattern: '^\['
negate: true
match: after
document_type: account

-
paths:
- /home/project/elk/logs/customer.log
input_type: log
multiline:
pattern: '^\['
negate: true
match: after
document_type: customer
output:
logstash:
hosts: ["localhost:5044"]

通过document_type来标识不同系统模块② 修改Logstash中output的配置内容为:

output {
elasticsearch {
hosts => "localhost:9200"
index => "%{type}"
}
}

“在output中增加index属性,%{type}表示按不同的document_type值建ES索引”

(三)总结

本文主要介绍了ELK实时日志分析的三种部署架构,以及不同架构所能解决的问题,这三种架构中第二种部署方式是时下最流行也是最常用的部署方式。最后介绍了ELK作在日志分析中的一些问题与解决方案,说在最后,ELK不仅仅可以用来作为分布式日志数据集中式查询和管理,还可以用来作为项目应用以及服务器资源监控等场景,更多内容请看官网。


相关推荐

NUS邵林团队发布DexSinGrasp基于强化学习实现物体分离与抓取统一

本文的作者均来自新加坡国立大学LinSLab。本文的共同第一作者为新加坡国立大学实习生许立昕和博士生刘子轩,主要研究方向为机器人学习和灵巧操纵,其余作者分别为硕士生桂哲玮、实习生郭京翔、江泽宇以及...

「PLC进阶」如何通过编写SCL语言程序实现物料分拣?

01、前言SCL作为IEC61131-3编程语言的一种,由于其高级语言的特性,特别适合复杂运算、复杂数学函数应用的场合。本文以FactoryIO软件中的物料分拣案例作为硬件基础,介绍如何通过SCL来实...

zk源码—5.请求的处理过程一(http1.1请求方法)

大纲1.服务器的请求处理链...

自己动手从0开始实现一个分布式 RPC 框架

前言为什么要自己写一个RPC框架,我觉得从个人成长上说,如果一个程序员能清楚的了解RPC框架所具备的要素,掌握RPC框架中涉及的服务注册发现、负载均衡、序列化协议、RPC通信协议、Socket通信、异...

MLSys’25 | 极低内存消耗:用SGD的内存成本实现AdamW的优化性能

AIxiv专栏是机器之心发布学术、技术内容的栏目。过去数年,机器之心AIxiv专栏接收报道了2000多篇内容,覆盖全球各大高校与企业的顶级实验室,有效促进了学术交流与传播。如果您有优秀的工作想要分享,...

线程池误用导致系统假死(线程池会自动销毁吗)

背景介绍在项目中,为了提高系统性能使用了RxJava实现异步方案,其中异步线程池是自建的。但是当QPS稍微增大之后却发现系统假死、无响应和返回,调用方出现大量超时现象。但是通过监控发现,系统线程数正常...

大型乘用车工厂布局规划(六大乘用车基地)

乘用车工厂的布局规划直接影响生产效率、物流成本、安全性和未来扩展能力。合理的布局应确保生产流程顺畅、物流高效、资源优化,并符合现代化智能制造和绿色工厂的要求。以下是详细的工厂布局规划要点:1.工厂布...

西门子 S7-200 SMART PLC 连接Factory IO的方法

有很多同学不清楚如何西门子200smart如何连接FactoryIO,本教程为您提供了如何使用西门子S7-200SMARTPLC连接FactoryIO的说明。设置PC和PLC之间的...

西门子博图高级仿真软件的应用(西门子博途软件仿真)

1.博图高级仿真软件(S7-PLCSIMAdvancedV2.0)S7-PLCSIMAdvancedV2.0包含大量仿真功能,通过创建虚拟控制器对S7-1500和ET200SP控制器进行仿真...

PLC编程必踩的6大坑——请对号入座,评论区见

一、缺乏整体规划:面条式代码问题实例:某快递分拣线项目初期未做流程图设计,工程师直接开始编写传送带控制程序。后期增加质检模块时发现I/O地址冲突,电机启停逻辑与传感器信号出现3处死循环,导致项目延期2...

统信UOS无需开发者模式安装软件包
统信UOS无需开发者模式安装软件包

原文链接:统信UOS无需开发者模式安装软件包...

2025-05-05 14:55 csdh11

100个Java工具类之76:数据指纹DigestUtils

为了提高数据安全性,保证数据的完整性和真实性,DigestUtils应运而生。正确恰当地使用DigestUtils的加密算法,可以实现数据的脱敏,防止数据泄露或篡改。...

麒麟KYLINIOS软件仓库搭建02-软件仓库添加新的软件包

#秋日生活打卡季#原文链接:...

Java常用工具类技术文档(java中工具类的作用)

一、概述Java工具类(UtilityClasses)是封装了通用功能的静态方法集合,能够简化代码、提高开发效率。本文整理Java原生及常用第三方库(如ApacheCommons、GoogleG...

软路由的用法(自动追剧配置)(软路由教学)

本内容来源于@什么值得买APP,观点仅代表作者本人|作者:值友98958248861环境和需求...